The
of the antecedent and the consequent of the conditional
\[\begin{equation*} P \implies Q \end{equation*} \]
in the form
\[\begin{align*} & P \impliedby Q \\ \qor & Q \implies P, \end{align*} \]
which, unlike the contrapositive, is
so
\[\begin{equation*} (Q \implies P) \> \not \equiv \> (P \implies Q), \end{equation*} \]
but is
so
\[\begin{equation*} (Q \implies P) \> \equiv \> (\lnot P \implies \lnot Q). \end{equation*} \]
For example, the statement
“if you are dancing, you are sweating”
is not equivalent to
“if you sweating, you are dancing”,
as you might be
Prove the statement
\[\begin{equation*} (P \implies Q) \> \not \equiv \> (Q \implies P). \end{equation*} \]
By the definition of the conditional and the biconditional,
\[\begin{align*} (P \implies Q) & \equiv (Q \implies P) \\ (\lnot P \lor Q) & \equiv (\lnot Q \lor P) \\ (\lnot P \lor Q) \implies (\lnot Q \lor P) \big) & \land \big( (\lnot Q \lor P) \implies (\lnot P \lor Q) \big) \\ \big( \lnot (\lnot P \lor Q) \lor (\lnot Q \lor P) \big) & \land \big( \lnot (\lnot Q \lor P) \lor (\lnot P \lor Q) \big), \end{align*} \]
which is not a tautology, as per
<<scheme/tautology?>> (not (tautology? (lambda (p q) (and (or (not (or (not p) q)) (or (not q) p)) (or (not (or (not q) p)) (or (not p) q)))) 2))
#t
\(\blacksquare\)