Converse
The
reversal
of the antecedent and the consequent of the conditional
\begin{equation*} P \implies Q \end{equation*}in the form
\begin{align*} & P \impliedby Q \\ \qor & Q \implies P, \end{align*}which, unlike the contrapositive, is
not equivalent to the original statement,
so
\begin{equation*} (Q \implies P) \> \not \equiv \> (P \implies Q), \end{equation*}but is
equivalent to its inverse,
so
\begin{equation*} (Q \implies P) \> \equiv \> (\lnot P \implies \lnot Q). \end{equation*}(Levin 2021, sec. 0.2)