Rudolf Adamkovič Personal site


Biconditional

Define

A binary logical connective, denoted

\[\begin{equation*}
  P \iff Q \qor P \equiv Q,
\end{equation*}
\]

and read

\(P\) if and only if \(Q\)
or\(P\) is equivalent to \(Q\)”,

that is ‘trueif and only if

\(P\) and \(Q\) are both either ‘true’ or ‘false’,

which is equivalent to

\[\begin{equation*}
  (P \implies Q) \> \land \> (Q \implies P).
\end{equation*}
\]

(Levin, 2021, sec. 0.2; Poole & Mackworth, 2017, sec. 5.1)

Name

Explore

Construct the truth table for the statement

\[\begin{align*}
  P \iff Q \>
  & \equiv \> (P \implies Q) \land (Q \implies P) \\
  & \equiv \> (\lnot P \lor Q) \land (\lnot Q \lor P).
\end{align*}
\]
<<scheme/org-truth-table>>
(org-truth-table (lambda (p q)
                   (and (or (not p) q)
                        (or (not q) p)))
                 '("P" "Q"
                   "P \\iff Q"))
\(P\)\(Q\)\(P \iff Q\)
falsefalsetrue
falsetruefalse
truefalsefalse
truetruetrue


© 2024 Rudolf Adamkovič under GNU General Public License version 3.
Made with Emacs and secret alien technologies of yesteryear.