A binary logical connective, denoted
\[\begin{equation*} P \iff Q \qor P \equiv Q, \end{equation*} \]
and read
“\(P\) if and only if \(Q\)” | |
or | “\(P\) is equivalent to \(Q\)”, |
that is ‘true’ if and only if
which is equivalent to
\[\begin{equation*} (P \implies Q) \> \land \> (Q \implies P). \end{equation*} \]
(Levin, 2021, sec. 0.2; Poole & Mackworth, 2017, sec. 5.1)
Construct the truth table for the statement
\[\begin{align*} P \iff Q \> & \equiv \> (P \implies Q) \land (Q \implies P) \\ & \equiv \> (\lnot P \lor Q) \land (\lnot Q \lor P). \end{align*} \]
<<scheme/org-truth-table>> (org-truth-table (lambda (p q) (and (or (not p) q) (or (not q) p))) '("P" "Q" "P \\iff Q"))
\(P\) | \(Q\) | \(P \iff Q\) |
---|---|---|
false | false | true |
false | true | false |
true | false | false |
true | true | true |