Home / Logic / Biconditional
Truth table
Construct the truth table for the statement
\begin{align*} P \iff Q \> & \equiv \> (P \implies Q) \land (Q \implies P) \\ & \equiv \> (\lnot P \lor Q) \land (\lnot Q \lor P). \end{align*}<<scheme/org-truth-table>>
(org-truth-table (lambda (p q)
                   (and (or (not p) q)
                        (or (not q) p)))
                 '("P" "Q"
                   "P \\iff Q"))
| \(P\) | \(Q\) | \(P \iff Q\) | 
|---|---|---|
| false | false | true | 
| false | true | false | 
| true | false | false | 
| true | true | true |