Home / Logic / Biconditional
Truth table
Construct the truth table for the statement
\begin{align*} P \iff Q \> & \equiv \> (P \implies Q) \land (Q \implies P) \\ & \equiv \> (\lnot P \lor Q) \land (\lnot Q \lor P). \end{align*}<<scheme/org-truth-table>>
(org-truth-table (lambda (p q)
(and (or (not p) q)
(or (not q) p)))
'("P" "Q"
"P \\iff Q"))
\(P\) | \(Q\) | \(P \iff Q\) |
---|---|---|
false | false | true |
false | true | false |
true | false | false |
true | true | true |