Rudolf Adamkovič Personal site


Conditional

Define

A binary logical connective, denoted

\[\begin{equation*}
  P \implies Q \qor Q \impliedby P
\end{equation*}
\]
where\(P\)is the antecedent
\(Q\)is the consequent,

and read

“if \(P\), then \(Q\)
or\(Q\) if \(P\)
or\(P\) implies \(Q\)”,

that is ‘trueif and only if

\(P\) and \(Q\) are ‘true’ or \(P\) is ‘false’,

so equivalent to

\[\begin{equation*}
  \lnot P \lor Q.
\end{equation*}
\]

Equivalent to its contrapositive but not to its converse.

(Levin, 2021, sec. 0.2; Poole & Mackworth, 2017, sec. 5.1)

Name

Explore

Construct the truth table for the statement

\[\begin{equation*}
  P \implies Q \> \equiv \> \lnot P \lor Q.
\end{equation*}
\]
<<scheme/org-truth-table>>
(org-truth-table (lambda (p q) (or (not p) q))
                 '("P" "Q" "P \\implies Q"))
\(P\)\(Q\)\(P \implies Q\)
falsefalsetrue
falsetruetrue
truefalsefalse
truetruetrue

(Levin, 2021, sec. 0.2; Poole & Mackworth, 2017, sec. 5.1)



© 2024 Rudolf Adamkovič under GNU General Public License version 3.
Made with Emacs and secret alien technologies of yesteryear.