A binary logical connective, denoted
\[\begin{equation*} P \implies Q \qor Q \impliedby P \end{equation*} \]
where | \(P\) | is the antecedent |
\(Q\) | is the consequent, |
and read
“if \(P\), then \(Q\)” | |
or | “\(Q\) if \(P\)” |
or | “\(P\) implies \(Q\)”, |
that is ‘true’ if and only if
so equivalent to
\[\begin{equation*} \lnot P \lor Q. \end{equation*} \]
Equivalent to its contrapositive but not to its converse.
(Levin, 2021, sec. 0.2; Poole & Mackworth, 2017, sec. 5.1)
Construct the truth table for the statement
\[\begin{equation*} P \implies Q \> \equiv \> \lnot P \lor Q. \end{equation*} \]
<<scheme/org-truth-table>> (org-truth-table (lambda (p q) (or (not p) q)) '("P" "Q" "P \\implies Q"))
\(P\) | \(Q\) | \(P \implies Q\) |
---|---|---|
false | false | true |
false | true | true |
true | false | false |
true | true | true |