The vector equation
\[\begin{equation*} x_1 \vec{a}_1 + \cdots + x_n \vec{a}_n = \vec{b}, \end{equation*} \]
asserts that
if and only if a there exists a solution to the equivalent matrix equation
\[\begin{equation*} A \vec{x} = \vec{b} \end{equation*} \]
or the equivalent linear system with the augmented matrix
\[\begin{equation*} \begin{pmatrix} \vphantom{\Big(} A & \vec{b} \, \end{pmatrix} = \begin{pmatrix} \vphantom{\Big(} \vec{a}_1 & \cdots & \vec{a}_n & \vec{b} \end{pmatrix}. \end{equation*} \]