… in terms of addition as the binary operation
\[\begin{equation*} \vec{u} + \vec{v} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} + \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} u_1 + v_1 \\ \vdots \\ u_n + v_n \end{pmatrix} \in V^n, \end{equation*} \]
with
\[\begin{equation*} \vec{u}, \vec{v} \in V^n, \quad \forall i : u_i, v_i \in F, \end{equation*} \]
where | \(\vec{u}, \vec{v}\) | are the terms, |
\(\vec{u} + \vec{v}\) | is the sum, | |
\(V^n\) | is the vector space with \(\vec{v}, \vec{u}\), and | |
\(F\) | is the field over which \(V^n\) is defined. |
… geometrically:
… is the zero vector \(\vec{0}\), so
\[\begin{gather*} \forall \vec{v} \in V, \\[1ex] \vec{v} + \vec{0} = \vec{v}. \end{gather*} \]
More generally,
\[\begin{gather*} \forall \vec{v} \in V, \> \exists! \vec{w} \in V : \\[1ex] \vec{v} + \vec{w} = \vec{v}, \end{gather*} \]
where the identity is
\[\begin{equation*} \vec{w} = \vec{0}. \end{equation*} \]
… is \(-\vec{v}\), so
\[\begin{gather*} \forall \vec{v} \in V, \\[1ex] \vec{v} + (-\vec{v}) = \vec{0}. \end{gather*} \]
More generally,
\[\begin{gather*} \forall \vec{v} \in V, \> \exists! \vec{w} \in V : \\[1ex] \vec{v} + \vec{w} = \vec{0}, \end{gather*} \]
where the identity is
\[\begin{equation*} w = -\vec{v}. \end{equation*} \]
… holds, so
\[\begin{gather*} \forall \vec{u}, \vec{v} \in V, \\[1ex] \vec{u} + \vec{v} = \vec{v} + \vec{u}. \end{gather*} \]
… holds, so
\[\begin{gather*} \forall \vec{u}, \vec{v}, \vec{w} \in V, \\[1ex] (\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w}). \end{gather*} \]
… in Scheme as