Rudolf Adamkovič Personal site


Vector addition

Define

… in terms of addition as the binary operation

\[\begin{equation*}
  \vec{u} + \vec{v}
  =
  \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}
  + \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}
  =
  \begin{pmatrix} u_1 + v_1 \\ \vdots \\ u_n + v_n \end{pmatrix}
  \in V^n,
\end{equation*}
\]

with

\[\begin{equation*}
  \vec{u}, \vec{v} \in V^n, \quad
  \forall i : u_i, v_i \in F,
\end{equation*}
\]
where\(\vec{u}, \vec{v}\)are the terms,
\(\vec{u} + \vec{v}\)is the sum,
\(V^n\)is the vector space with \(\vec{v}, \vec{u}\), and
\(F\)is the field over which \(V^n\) is defined.

Imagine

… geometrically:

  1. Draw \(\vec{u}\) and \(\vec{v}\) head to tail.
  2. Draw \(\vec{u} + \vec{v}\) from the free tail to the free head.

(Weisstein, n.d.)

Constrain

Implement

… in Scheme as



© 2024 Rudolf Adamkovič under GNU General Public License version 3.
Made with Emacs and secret alien technologies of yesteryear.