… as the binary operation
\[\begin{gather*} \forall a, b \in F, \\[1ex] a + b \in F \end{gather*} \]
where | \(a, b\) | are the terms, |
\(a + b\) | is the sum, and | |
\(F\) | is the field with \(a\) and \(b\). |
… is \(0\), so
\[\begin{gather*} \forall a \in F, \\[1ex] a + 0 = a. \end{gather*} \]
More generally,
\[\begin{gather*} \forall a \in F, \> \exists! b \in F : \\[1ex] a + b = a, \end{gather*} \]
where the identity is
\[\begin{equation*} b = 0. \end{equation*} \]
… is \(-a\), so
\[\begin{gather*} \forall a \in F, \\[1ex] a + (-a) = 0. \end{gather*} \]
More generally,
\[\begin{gather*} \forall a \in F, \> \exists! b \in F : \\[1ex] a + b = 0, \\[1ex] \end{gather*} \]
where the inverse is \(b = -a\).
… holds, so
\[\begin{gather*} \forall a, b \in F, \\[1ex] a + b = b + a. \end{gather*} \]
… holds, so
\[\begin{gather*} \forall a, b, c \in F, \\[1ex] (a + b) + c = a + (b + c). \end{gather*} \]