… as the set
that contains the zero vector, so
\[\begin{equation*} \vec{0} \in V, \end{equation*} \]
in conjunction with the vector addition operation
\[\begin{gather*} \forall \vec{u}, \vec{v} \in V, \\[1ex] \vec{u} + \vec{v} \in V \end{gather*} \]
and scalar multiplication operation
\[\begin{gather*} \forall a \in F, \> \forall \vec{v} \in V, \\[1ex] a \vec{v} \in V \end{gather*} \]
… by \(V^n\) to communicate that \(\forall \vec{v} \in V^n\), \(\vec{v}\) has exactly \(n\) components.