… in terms of scalar multiplication as the operation
\[\begin{equation*} c A = c \begin{pmatrix} \vphantom{\bigg(} \vec{a}_1 & \vec{a}_2 & \cdots \end{pmatrix} = \begin{pmatrix} \vphantom{\bigg(} c \vec{a}_1 & c \vec{a}_2 & \cdots \end{pmatrix}, \end{equation*} \]
where | \(c, A\) | are the factors and |
\(cA\) | is the product. |
… is \(1\), so
\[\begin{equation*} 1 A = A. \end{equation*} \]
… holds, so
\[\begin{equation*} c A = A c. \end{equation*} \]
… holds, so
\[\begin{equation*} c (d A) = (c d) A. \end{equation*} \]
… holds over matrix addition, where
\[\begin{equation*} c (A + B) = c A + c B. \end{equation*} \]