… in terms of vector addition as the binary operation
\[\begin{align*} A + B & = \begin{pmatrix} \vphantom{\bigg(} \vec{a}_1 & \cdots & \vec{a}_n \end{pmatrix} + \begin{pmatrix} \vphantom{\bigg(} \vec{b}_1 & \cdots & \vec{b}_n \end{pmatrix} \\[1ex] & = \begin{pmatrix} \vphantom{\bigg(} \vec{a}_1 + \vec{b}_1 & \cdots & \vec{a}_n + \vec{b}_n \end{pmatrix} \end{align*} \]
with
where | \(A, B\) | are the terms and |
\(A + B\) | is the sum. |
… is the zero matrix, so
\[\begin{equation*} A + 0_{m \times n} = A, \end{equation*} \]
… is \(-A\), so
\[\begin{equation*} A + (-A) = 0_{m \times n}. \end{equation*} \]
… holds, so
\[\begin{equation*} A + B = B + A. \end{equation*} \]
… holds, so
\[\begin{equation*} (A + B) + C = A + (B + C). \end{equation*} \]