Rudolf Adamkovič Personal site


Matrix addition

Define

… in terms of vector addition as the binary operation

\[\begin{align*}
  A + B
  & =
  \begin{pmatrix}
    \vphantom{\bigg(}
    \vec{a}_1 & \cdots & \vec{a}_n
  \end{pmatrix}
  +
  \begin{pmatrix}
    \vphantom{\bigg(}
    \vec{b}_1 & \cdots & \vec{b}_n
  \end{pmatrix}
  \\[1ex]
  & =
  \begin{pmatrix}
    \vphantom{\bigg(}
    \vec{a}_1 + \vec{b}_1 & \cdots & \vec{a}_n + \vec{b}_n
  \end{pmatrix}
\end{align*}
\]

with

\(A_{m \times n}\)  and  \(B_{m \times n}\),
where\(A, B\)are the terms and
\(A + B\)is the sum.

Discuss



© 2024 Rudolf Adamkovič under GNU General Public License version 3.
Made with Emacs and secret alien technologies of yesteryear.