Personal website Rudolf Adamkovič

Home / Linear algebra


Matrix addition

The binary operation, defined in terms of vector addition,

\begin{align*} A + B & = \begin{pmatrix} \vphantom{\bigg(} \vec{a}_1 & \cdots & \vec{a}_n \end{pmatrix} + \begin{pmatrix} \vphantom{\bigg(} \vec{b}_1 & \cdots & \vec{b}_n \end{pmatrix} \\[1ex] & = \begin{pmatrix} \vphantom{\bigg(} \vec{a}_1 + \vec{b}_1 & \cdots & \vec{a}_n + \vec{b}_n \end{pmatrix} \end{align*}

with

\begin{equation*} A_{m \times n}, B_{m \times n}, \end{equation*}
where \(A, B\) are the terms and
  \(A + B\) is the sum.


© 2025 Rudolf Adamkovič under GNU General Public License version 3.
Made with Emacs and secret alien technologies of yesteryear.