… in terms of multiplication as the binary operation
\[\begin{equation*} a \vec{v} = a \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} a v_1 \\ \vdots \\ a v_2 \end{pmatrix} \in V^n, \end{equation*} \]
with
\[\begin{equation*} a \in F, \quad \vec{v} \in V^n, \quad \forall i : v_i \in F, \end{equation*} \]
where | \(a\) | is the scalar and |
\(a \vec{v}\) | is the scaled vector, | |
\(V^n\) | is the vector space with \(\vec{v}\), and | |
\(F\) | is the field over which \(V^n\) is defined. |
… drawing \(a \vec{v}\) as a copy of \(\vec{v}\) with
… is \(1\), so
\[\begin{gather*} \forall \vec{v} \in V, \\[1ex] 1 \vec{v} = \vec{v}. \end{gather*} \]
More generally,
\[\begin{gather*} \forall v \in V, \> \exists! a \in F : \\[1ex] a \vec{v} = \vec{v}, \end{gather*} \]
where the identity is
\[\begin{equation*} a = 1. \end{equation*} \]
… holds, so
\[\begin{gather*} \forall a, b \in F, \> \forall \vec{v} \in V, \> \\[1ex] (a b) \vec{v} = a (b \vec{v}). \end{gather*} \]
… holds over vector addition, where
\[\begin{gather*} \forall a, b \in F, \> \forall \vec{u}, \vec{v} \in V, \> \\[1ex] a(\vec{u} + \vec{v}) = a \vec{u} + a \vec{v} \end{gather*} \]
which is the one and only
link between vector addition and scalar multiplication
in the vector space.
… in Scheme as