A linear combination of matrix columns using a vector of weights,
\[\begin{align*} AB & = A \begin{pmatrix} \vphantom{\bigg(} \vec{b}_1 & \cdots & \vec{b}_n \end{pmatrix} = \begin{pmatrix} \vphantom{\bigg(} A \vec{b}_1 & \cdots & A \vec{b}_n, \end{pmatrix} \in V^m \\ \qusing* A \vec{b} & = \begin{pmatrix} \vphantom{\bigg(} \vec{a}_1 & \cdots & \vec{a}_n \end{pmatrix} \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} = b_1 \vec{a}_1 + \cdots + b_m \vec{a}_n \in V^m, \end{align*} \]
defined in terms of vector addition and scalar multiplication,
where | \(A_{m \times p}, B_{p \times n}\) | are the factors, |
\((AB)_{m \times n}\) | is the resulting product, | |
\(V^m\) | is the containing vector space. |