The set
that contains the zero vector, so
\[\begin{equation*} \vec{0} \in V, \end{equation*} \]
in conjunction with the vector addition operation
\[\begin{equation*} \forall \vec{u}, \vec{v} \in V \> : \> \vec{u} + \vec{v} \in V \end{equation*} \]
and scalar multiplication operation
\[\begin{equation*} \forall a \in F, \> \forall \vec{v} \in V \> : \> a \vec{v} \in V \end{equation*} \]
which is the one and only
link between vector addition and scalar multiplication
in the vector space.