The binary operation, defined in terms of addition,
\[\begin{equation*} \vec{u} + \vec{v} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} + \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} u_1 + v_1 \\ \vdots \\ u_n + v_n \end{pmatrix} \in V^n, \end{equation*} \]
with
\[\begin{equation*} \vec{u}, \vec{v} \in V^n, \quad \forall i : u_i, v_i \in F, \end{equation*} \]
where | \(\vec{u}, \vec{v}\) | are the terms, |
\(\vec{u} + \vec{v}\) | is the resulting sum, | |
\(V^n\) | is the vector space with \(\vec{v}, \vec{u}\), and | |
\(F\) | is the field over which \(V^n\) is defined. |