Rudolf Adamkovič Personal site


Mutual exclusivity

Define

A joined property of the statements \(P\) and \(Q\), read

\(P\) excludes \(Q\)”,
or\(P\) precludes \(Q\)”,
or\(P\) contradicts \(Q\)”,

if and only if

\(P\) and \(Q\) cannot be ‘true’ at the same time,

which means that

\[\begin{equation*}
  \lnot (P \land Q)
\end{equation*}
\]

is a tautology.

Name

Explore

Construct the truth table for the statement

\[\begin{equation*}
  \lnot (P \land Q).
\end{equation*}
\]
<<scheme/org-truth-table>>
(org-truth-table (lambda (p q) (not (and p q)))
                 '("P" "Q" "\\lnot (P \\land Q)"))
\(P\)\(Q\)\(\lnot (P \land Q)\)
falsefalsetrue
falsetruetrue
truefalsetrue
truetruefalse


© 2024 Rudolf Adamkovič under GNU General Public License version 3.
Made with Emacs and secret alien technologies of yesteryear.