A joined property of the statements \(P\) and \(Q\), read
“\(P\) excludes \(Q\)”, | |
or | “\(P\) precludes \(Q\)”, |
or | “\(P\) contradicts \(Q\)”, |
which means that
\[\begin{equation*} \lnot (P \land Q) \end{equation*} \]
is a tautology.
Construct the truth table for the statement
\[\begin{equation*} \lnot (P \land Q). \end{equation*} \]
<<scheme/org-truth-table>> (org-truth-table (lambda (p q) (not (and p q))) '("P" "Q" "\\lnot (P \\land Q)"))
\(P\) | \(Q\) | \(\lnot (P \land Q)\) |
---|---|---|
false | false | true |
false | true | true |
true | false | true |
true | true | false |