Rudolf Adamkovič Personal site


Exclusive disjunction

Define

A binary logical connective, denoted

\[\begin{equation*}
  P \oplus Q
\end{equation*}
\]

and read

“either \(P\) or \(Q\)”,

that is ‘trueif and only if

\(P\) and \(Q\) differ,

so equivalent to

\[\begin{equation*}
  (P \land \lnot Q) \lor (\lnot P \land Q).
\end{equation*}
\]

(Levin, 2021, sec. 0.2; Poole & Mackworth, 2017, sec. 5.1)

Name

Explore

Construct the truth table for the statement

\[\begin{equation*}
  P \oplus Q \> \equiv \> (P \land \lnot Q) \lor (\lnot P \land Q).
\end{equation*}
\]
<<scheme/org-truth-table>>
(org-truth-table (lambda (p q)
                   (or (and p (not q))
                       (and (not p) q)))
                 '("P" "Q" "P \\oplus Q"))
\(P\)\(Q\)\(P \oplus Q\)
falsefalsefalse
falsetruetrue
truefalsetrue
truetruefalse


© 2024 Rudolf Adamkovič under GNU General Public License version 3.
Made with Emacs and secret alien technologies of yesteryear.