Home / Linear algebra / Vector scaling
Properties
Per its algebraic properties,
it:
commutes, so
\(a \vec{v} = \vec{v} a\);
associates, so
\((a b) \vec{v} = a (b \vec{v})\);
distributes over vector addition, so
\(a(\vec{u} + \vec{v}) = a \vec{u} + a \vec{v}\); and
has exactly one multiplicative identity: \(1\), so
\(1 \vec{v} = \vec{v}\).