Personal website Rudolf Adamkovič

Home / Linear algebra


Subspace

A subset the real space \(H \in \mathbb{R}^n\) that

  • contains the zero vector \(\vec{0}\), so

    \begin{equation*} \vec{0} \in H, \end{equation*}
  • is closed under vector addition, so

    \begin{equation*} \forall \vec{u} \in H, \; \forall \vec{v} \in H \iff (\vec{u} + \vec{v}) \in H, \enspace \qand* \end{equation*}
  • is closed under scalar multiplication, so

    \begin{equation*} \forall c \in \mathbb{R}^1, \; \forall \vec{v} \in H \iff c \vec{v} \in H. \end{equation*}
  • Synonyms
  • Examples

© 2025 Rudolf Adamkovič under GNU General Public License version 3.
Made with Emacs and secret alien technologies of yesteryear.