Rudolf Adamkovič Personal site


Example

Solve the linear system

\[\begin{aligned*}
  x + 2y + z & = 1 \\
  3x + y + 4x & = 0 \\
  2x + 2y + 3z & = 2.
\end{aligned*}
\]

Phase 1. Towards the row echelon form.

  1. Write an augmented matrix.
    \[\begin{equation*}
      M =
      \begin{pmatrix}
        1 & 2 & 1 & 1 \\
        3 & 1 & 4 & 0 \\
        2 & 2 & 3 & 2
      \end{pmatrix}.
    \end{equation*}
    \]
  2. Move all zero rows.

    Nothing to do.

  3. Enumerating rows, top to bottom:

    For \(M_1\):

    1. Scale the selected row.

      Nothing to do.

    2. Replace the rows below the selected row.

      \(M_2 \gets M_2 + kM_1\) with \(k = -3\), so

      \[\begin{align*}
        M
        & \gets
        \begin{pmatrix}
          1 & 2 & 1 & 1
          \\
          3 + (-3) \cdot 1
          & 1 + (-3) \cdot 2
          & 4 + (-3) \cdot 1
          & 0 + (-3) \cdot 1
          \\
          2 & 2 & 3 & 2
        \end{pmatrix}
        \\[2ex]
        & =
        \begin{pmatrix}
          1 & 2 & 1 & 1 \\
          0 & -5 & 1 & -3 \\
          2 & 2 & 3 & 2
        \end{pmatrix}.
      \end{align*}
      \]

      \(M_3 \gets M_3 + kM_1\) with \(k = -2\), so

      \[\begin{align*}
        M
        & \gets
        \begin{pmatrix}
          1 & 2 & 1 & 1 \\
          0 & -5 & 1 & -3
          \\
          2 + (-2) \cdot 1
          & 2 + (-2) \cdot 2
          & 3 + (-2) \cdot 1
          & 2 + (-2) \cdot 1
        \end{pmatrix}
        \\[2ex]
        & =
        \begin{pmatrix}
          1 & 2 & 1 & 1 \\
          0 & -5 & 1 & -3 \\
          0 & -2 & 1 & 0
        \end{pmatrix}.
      \end{align*}
      \]

    For \(M_2\):

    1. Scale the selected row.

      \(M_2 \gets kM_2\) with \(k = -\frac{1}{5}\), so

      \[\begin{align*}
        M
        & \gets
        \begin{pmatrix}
          1 & 2 & 1 & 1
          \\
          -\frac{1}{5} \cdot 0
          & -\frac{1}{5} \cdot (-5)
          & -\frac{1}{5} \cdot 1
          & -\frac{1}{5} \cdot (-3)
          \\
          0 & -2 & 1 & 0
        \end{pmatrix}
        \\[2ex]
        & =
        \begin{pmatrix}
          1 & 2 & 1 & 1 \\
          0 & 1 & -\frac{1}{5} & \frac{3}{5} \\
          0 & -2 & 1 & 0
        \end{pmatrix}.
      \end{align*}
      \]
    2. Replace the rows below the selected row.

      \(M_3 \gets M_3 + kM_2\) with \(k = 2\), so

      \[\begin{align*}
        M
        & \gets
        \begin{pmatrix}
          1 & 2 & 1 & 1 \\
          0 & 1 & -\frac{1}{5} & \frac{3}{5}
          \\
          0 + 2 \cdot 0
          & -2 + 2 \cdot 1
          & 1 + 2 \cdot (-\frac{1}{5})
          & 0 + 2 \cdot \frac{3}{5}
        \end{pmatrix}
        \\[2ex]
        & =
        \begin{pmatrix}
          1 & 2 & 1 & 1 \\
          0 & 1 & -\frac{1}{5} & \frac{3}{5} \\
          0 & 0 & \frac{3}{5} & \frac{6}{5}
        \end{pmatrix}.
      \end{align*}
      \]

    For \(M_3\):

    1. Scale the selected row.

      \(M_3 \gets kM_3\) with \(k = \frac{5}{3}\), so

      \[\begin{align*}
        M
        & \gets
        \begin{pmatrix}
          1 & 2 & 1 & 1 \\
          0 & 1 & -\frac{1}{5} & \frac{3}{5}
          \\
          \frac{5}{3} \cdot 0
          & \frac{5}{3} \cdot 0
          & \frac{5}{3} \cdot \frac{3}{5}
          & \frac{5}{3} \cdot \frac{6}{5}
        \end{pmatrix}
        \\[2ex]
        & =
        \begin{pmatrix}
          1 & 2 & 1 & 1 \\
          0 & 1 & -\frac{1}{5} & \frac{3}{5} \\
          0 & 0 & 1 & 2
        \end{pmatrix}.
      \end{align*}
      \]
    2. Replace the rows below the selected row.

      Nothing to do.

Phase 2.

  1. Is the last column is a pivot column?

    The system is consistent.

  2. Enumerating rows, bottom to top:

    For \(M_3\):

    1. Replace the rows above.

      \(M_2 \gets M_2 + kM_3\) using \(k = \frac{1}{5}\), so

      \[\begin{align*}
        M
        & \gets
        \begin{pmatrix}
          1 & 2 & 1 & 1
          \\
          0 + \frac{1}{5} \cdot 0
          & 1 + \frac{1}{5} \cdot 0
          & -\frac{1}{5} + \frac{1}{5} \cdot 1
          & \frac{3}{5} + \frac{1}{5} \cdot 2
          \\
          0 & 0 & 1 & 2
        \end{pmatrix}
        \\[2ex]
        & =
        \begin{pmatrix}
          1 & 2 & 1 & 1 \\
          0 & 1 & 0 & 1 \\
          0 & 0 & 1 & 2
        \end{pmatrix}.
      \end{align*}
      \]

      \(M_1 \gets M_1 + kM_3\) using \(k = -1\), so

      \[\begin{align*}
        M
        & \gets
        \begin{pmatrix}
          1 + (-1) \cdot 0
          & 2 + (-1) \cdot 0
          & 1 + (-1) \cdot 1
          & 1 + (-1) \cdot 2
          \\
          0 & 1 & 0 & 1 \\
          0 & 0 & 1 & 2
        \end{pmatrix}
        \\
        & =
        \begin{pmatrix}
          1 & 2 & 0 & -1 \\
          0 & 1 & 0 & 1 \\
          0 & 0 & 1 & 2
        \end{pmatrix}.
      \end{align*}
      \]

    For \(M_2\):

    1. Replace the rows above.

    \(M_1 \gets M_1 + kM_2\) using \(k = -2\), so

    \[\begin{align*}
      M
      & \gets
      \begin{pmatrix}
        1 + (-2) \cdot 0
        & 2 + (-2) \cdot 1
        & 0 + (-2) \cdot 0
        & -1 + (-2) \cdot 1
        \\
        0 & 1 & 0 & 1 \\
        0 & 0 & 1 & 2
      \end{pmatrix}
      \\
      & =
      \begin{pmatrix}
        1 & 0 & 0 & -3 \\
        0 & 1 & 0 & 1 \\
        0 & 0 & 1 & 2
      \end{pmatrix}.
    \end{align*}
    \]

    For \(M_1\):

    1. Replace the rows above.

      Nothing to do.

The solution is \((x, y, z) = (-3, 1, 2)\).


© 2025 Rudolf Adamkovič under GNU General Public License version 3.
Made with Emacs and secret alien technologies of yesteryear.