Rudolf Adamkovič Personal site


Example: Non-homogeneous inconsistent system

Solve \(A \vec{x} = \vec{b}\), given

\[\begin{equation*}
  A = \begin{pmatrix}
    1 & -2 & 3 \\
    2 & 1 & -1 \\
    -3 & -4 & 5
  \end{pmatrix},
  \quad
  \vec{b} = \begin{pmatrix}
    3 \\ 9 \\ -8
  \end{pmatrix}.
\end{equation*}
\]
  1. Write the augmented matrix and row-reduce it.
    \[\begin{align*}
      \begin{pmatrix}
        \vphantom{\Big(}
        A & \vec{b} \,
      \end{pmatrix}
      & =
      \begin{pmatrix}
        1 & -2 & 3 & 3 \\
        2 & 1 & -1 & 9 \\
        -3 & -4 & 5 & -8
      \end{pmatrix}
      \\[2ex]
      \operatorname{rref}
        \begin{pmatrix}
        \vphantom{\Big(}
        A & \vec{b} \,
      \end{pmatrix}
      & =
      \begin{pmatrix}
        1 & 0 & \frac{1}{5} & 0 \\
        0 & 1 & -\frac{7}{5} & 0 \\
        0 & 0 & 0 & 1
      \end{pmatrix}
    \end{align*}
    \]

    The last column is the pivot column, so the system is inconsistent.


© 2025 Rudolf Adamkovič under GNU General Public License version 3.
Made with Emacs and secret alien technologies of yesteryear.