Solve \(A \vec{x} = \vec{b}\), given
\[\begin{equation*} A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & 1 & -1 \\ -3 & -4 & 5 \end{pmatrix} \qand \vec{b} = \begin{pmatrix} 3 \\ 9 \\ -15 \end{pmatrix}. \end{equation*} \]
\[\begin{align*} \begin{pmatrix} \vphantom{\Big(} A & \vec{b} \, \end{pmatrix} & = \begin{pmatrix} 1 & -2 & 3 & 3 \\ 2 & 1 & -1 & 9 \\ -3 & -4 & 5 & -15 \end{pmatrix} \\[2ex] \operatorname{rref} \begin{pmatrix} \vphantom{\Big(} A & \vec{b} \, \end{pmatrix} & = \begin{pmatrix} 1 & 0 & \frac{1}{5} & \frac{21}{5} \\ 0 & 1 & -\frac{7}{5} & \frac{3}{5} \\ 0 & 0 & 0 & 0 \end{pmatrix} \end{align*} \]
\[\begin{equation*} \begin{aligned} x_1 + \frac{1}{5} x_3 & = \frac{21}{5} \\ x_2 - \frac{7}{5} x_3 & = \frac{3}{5} \end{aligned} \quad \iff \quad \begin{aligned} x_1 & = -\frac{1}{5} x_3 + \frac{21}{5} \\ x_2 & = \frac{7}{5} x_3 + \frac{3}{5} \end{aligned} \end{equation*} \]
\[\begin{equation*} \vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -\frac{1}{5} x_3 + \frac{21}{5} \\ \frac{7}{5} x_3 + \frac{3}{5} \\ x_3 \end{pmatrix} = x_3 \begin{pmatrix} -\frac{1}{5} \\ \frac{7}{5} \\ 1 \end{pmatrix} + \begin{pmatrix} \frac{25}{5} \\ \frac{3}{5} \\ 0 \end{pmatrix} = x_3 \begin{pmatrix} -1 \\ 7 \\ 5 \end{pmatrix} + \begin{pmatrix} 25 \\ 3 \\ 0 \end{pmatrix} \end{equation*} \]