Solve \(A \vec{x} = \vec{0}\), given
\[\begin{equation*} A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & 1 & -1 \\ -3 & -4 & 5 \end{pmatrix}. \end{equation*} \]
\[\begin{align*} \begin{pmatrix} \vphantom{\Big(} A & \vec{0} \, \end{pmatrix} & = \begin{pmatrix} 1 & -2 & 3 & 0 \\ 2 & 1 & -1 & 0 \\ -3 & -4 & 5 & 0 \end{pmatrix} \\[2ex] \operatorname{rref} \begin{pmatrix} \vphantom{\Big(} A & \vec{0} \, \end{pmatrix} & = \begin{pmatrix} 1 & 0 & \frac{1}{5} & 0 \\ 0 & 1 & -\frac{7}{5} & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \end{align*} \]
\[\begin{equation*} \begin{aligned} x_1 + \frac{1}{5} x_3 & = 0 \\ x_2 - \frac{7}{5} x_3 & = 0 \end{aligned} \quad \iff \quad \begin{aligned} x_1 & = -\frac{1}{5} x_3 \\ x_2 & = \frac{7}{5} x_3 \end{aligned} \end{equation*} \]
\[\begin{equation*} \vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} -\frac{1}{5} x_3 \\ \frac{7}{5} x_3 \\ x_3 \end{pmatrix} = x_3 \begin{pmatrix} -\frac{1}{5} \\ \frac{7}{5} \\ 1 \end{pmatrix} = x_3 \begin{pmatrix} -1 \\ 7 \\ 5 \end{pmatrix}. \end{equation*} \]
Note. This is a line in \(\mathbb{R}^3\).