Rudolf Adamkovič Personal site


Example: Homogeneous consistent system

Solve \(A \vec{x} = \vec{0}\), given

\[\begin{equation*}
  A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & 1 & -1 \\ -3 & -4 & 5 \end{pmatrix}.
\end{equation*}
\]
  1. Write the augmented matrix and row-reduce it.
    \[\begin{align*}
      \begin{pmatrix}
        \vphantom{\Big(}
        A & \vec{0} \,
      \end{pmatrix}
      & =
      \begin{pmatrix}
        1 & -2 & 3 & 0 \\
        2 & 1 & -1 & 0 \\
        -3 & -4 & 5 & 0
      \end{pmatrix}
      \\[2ex]
      \operatorname{rref}
      \begin{pmatrix}
        \vphantom{\Big(}
        A & \vec{0} \,
      \end{pmatrix}
      & =
      \begin{pmatrix}
        1 & 0 & \frac{1}{5} & 0 \\
        0 & 1 & -\frac{7}{5} & 0 \\
        0 & 0 & 0 & 0
      \end{pmatrix}
    \end{align*}
    \]
  2. Write the solution in terms of basic variables.
    \[\begin{equation*}
      \begin{aligned}
        x_1 + \frac{1}{5} x_3 & = 0 \\
        x_2 - \frac{7}{5} x_3 & = 0
      \end{aligned}
      \quad \iff \quad
      \begin{aligned}
        x_1 & = -\frac{1}{5} x_3 \\
        x_2 & = \frac{7}{5} x_3
      \end{aligned}
    \end{equation*}
    \]
  3. Rewrite the solution in the parametric form.
    \[\begin{equation*}
      \vec{x}
      =
      \begin{pmatrix}
        x_1 \\ x_2 \\ x_3
      \end{pmatrix}
      =
      \begin{pmatrix}
        -\frac{1}{5} x_3 \\ \frac{7}{5} x_3 \\ x_3
      \end{pmatrix}
      = x_3
      \begin{pmatrix}
        -\frac{1}{5} \\ \frac{7}{5} \\ 1
      \end{pmatrix}
      = x_3
      \begin{pmatrix}
        -1 \\ 7 \\ 5
      \end{pmatrix}.
    \end{equation*}
    \]

    Note. This is a line in \(\mathbb{R}^3\).


© 2025 Rudolf Adamkovič under GNU General Public License version 3.
Made with Emacs and secret alien technologies of yesteryear.