Home / Linear algebra / Dot product
Properties
Commutes, so
\(\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}\);
distributes over vector addition, so
\(\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}\);
associates with respect to scalar multiplication, so
\((c \vec{u}) \cdot \vec{v} = c (\vec{u} \cdot \vec{v}) = \vec{u} \cdot (c \vec{v})\).