The binary operation, defined in terms of vector addition,
\[\begin{align*} A + B & = \begin{pmatrix} \vphantom{\bigg(} \vec{a}_1 & \cdots & \vec{a}_n \end{pmatrix} + \begin{pmatrix} \vphantom{\bigg(} \vec{b}_1 & \cdots & \vec{b}_n \end{pmatrix} \\[1ex] & = \begin{pmatrix} \vphantom{\bigg(} \vec{a}_1 + \vec{b}_1 & \cdots & \vec{a}_n + \vec{b}_n \end{pmatrix} \end{align*} \]
with
\[\begin{equation*} A_{m \times n}, B_{m \times n}, \end{equation*} \]
where | \(A, B\) | are the terms and |
\(A + B\) | is the sum. |