… the closed form as
\[\begin{align*} \| \vec{u} - \vec{v} \| \tag{1} & = \left\| \begin{pmatrix} u_1 \\ \vdots \\ u_m \end{pmatrix} - \begin{pmatrix} v_1 \\ \vdots \\ v_m \end{pmatrix} \right\| \\[1ex] \tag{2} & = \sqrt{(\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v})} \\[1ex] \tag{3} & = \sqrt{{(\vec{u} - \vec{v})}^\mathsf{T} (\vec{u} - \vec{v})} \\[1ex] \tag{4} & = \sqrt{ \begin{pmatrix} \vphantom{\bigg(} u_1 - v_1 & \cdots & u_m - v_m \end{pmatrix} \begin{pmatrix} u_1 - v_1 \\ \vdots \\ u_m - v_m \end{pmatrix} } \\[1ex] \tag{5} & = \sqrt{(u_1 - v_1) (u_1 - v_1) + \cdots + (u_m - v_m) (u_m - v_m)} \\[1ex] \tag{6} & = \sqrt{{(u_1 - v_1)}^2 + \cdots + {(u_m - v_m)}^2} \end{align*} \]
with