Big-M trick
A reification technique used to
linearize conditionals
in mixed-integer linear programming by
\begin{align*} \lambda = 1 & \implies ax \leq b \iff ax \leq b + M (1 - \lambda) \\ \lambda = 1 & \implies ax \geq b \iff ax \geq b - M (1 - \lambda) \end{align*}where
- \(\lambda\) is an indicator variable in the Boolean domain
- \(ax \leq b\) and \(ax \geq b\) are linear constraints
and the “big M” satisfies
\begin{equation*} M \geq \max(ax) - b. \end{equation*}