import tensorflow as tf
import numpy as np
import timeit
def np_add(a, b):
y = np.copy(a)
for i in range(b):
y += 1
return y
def tf_add_eager(a, b):
y = tf.identity(a)
for i in range(b):
y += tf.constant(1, dtype=a.dtype)
return y
tf_add_graph = tf.function(tf_add_eager)
a_shape = (20, 20)
b = 1000 - 1
tf_a, tf_b = (tf.ones(a_shape), b)
np_a, np_b = (np.ones(a_shape), b)
results = [["Runs", "NumPy", "TensorFlow Eager", "TensorFlow Graph"], None]
for runs in [1, 2, 10, 100, 1000]:
row = [runs]
for function in [lambda : np_add(np_a, np_b),
lambda : tf_add_eager(tf_a, tf_b),
lambda : tf_add_graph(tf_a, tf_b)]:
seconds = timeit.timeit(function, number = runs)
milliseconds_per_run = (seconds / runs) * 1000
row.append(f"{milliseconds_per_run:.4f}")
results.append(row)
results