Rudolf Adamkovič Personal site


Derive

  1. Let the joint distribution of the events A and B be
    B¬BAst¬Auv.
  2. Find the probabilities
    P(A)=s+ts+t+u+vusingstuvandP(B)=s+us+t+u+vusingstuv.
  3. Find the conditional probabilities
    P(A|B)=ss+uusingstuvandP(B|A)=ss+tusingstuv.
  4. See the equality
    Pr(A)Pr(B|A)=?Pr(B)Pr(A|B)s+ts+t+u+vss+t=s+us+t+u+vss+u(s+u)s(s+t+u+v)(s+u)=s+t)s(s+t+u+v)(s+t)ss+t+u+v=ss+t+u+v1=1.
  5. Divide by P(B) and swap sides,
    Pr(A)Pr(B|A)=Pr(B)Pr(A|B)Pr(A|B)=Pr(A)Pr(B|A)Pr(B).

    This is the Bayes’ theorem.


© 2025 Rudolf Adamkovič under GNU General Public License version 3.
Made with Emacs and secret alien technologies of yesteryear.