z**** Define A quantifier, denoted
\[\begin{equation*} \exists x \>\> P(x), \end{equation*} \]
and read
where \(P\) is the quantified predicate.
Equivalent to the universal quantifier under negation by
\[\begin{align*} \exists x \> \lnot P(x) \> & \equiv \> \lnot \forall x \> P(x) \\ \lnot \exists x \> P(x) \> & \equiv \> \forall x \> \lnot P(x). \end{align*} \]
which is akin De Morgan’s laws, with \(\exists\) generalizing disjunction.
There is no greatest integer \(k\) because
\[\begin{equation*} \forall k \in \mathbb{Z} \quad \exists \ell \in \mathbb{Z} \quad (\ell > k), \end{equation*} \]
that is
such as \(\ell = k + 1\).