If the matrix \(A\) in the matrix equation
\[\begin{equation*} A \vec{x} = \vec{b} \end{equation*} \]
is invertible, then a unique solution
\[\begin{equation*} \vec{x} = A^{-1} \vec{b} \end{equation*} \]
exists for each \(\vec{b} \in \mathbb{R}^n\).