Rudolf Adamkovič Personal site


Derive again

… the closed form as

\[\begin{align*}
  \| \vec{u} - \vec{v} \|
  \tag{1}
  & = \left\|
  \begin{pmatrix} u_1 \\ \vdots \\ u_m \end{pmatrix}
  -
  \begin{pmatrix} v_1 \\ \vdots \\ v_m \end{pmatrix}
  \right\|
  \\[1ex]
  \tag{2}
  & = \sqrt{(\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v})}
  \\[1ex]
  \tag{3}
  & = \sqrt{{(\vec{u} - \vec{v})}^\mathsf{T} (\vec{u} - \vec{v})}
  \\[1ex]
  \tag{4}
  & = \sqrt{
    \begin{pmatrix}
      \vphantom{\bigg(}
      u_1 - v_1 & \cdots & u_m - v_m
    \end{pmatrix}
    \begin{pmatrix}
      u_1 - v_1 \\ \vdots \\ u_m - v_m
    \end{pmatrix}
  }
  \\[1ex]
  \tag{5}
  & = \sqrt{(u_1 - v_1) (u_1 - v_1) + \cdots + (u_m - v_m) (u_m - v_m)}
  \\[1ex]
  \tag{6}
  & = \sqrt{{(u_1 - v_1)}^2 + \cdots + {(u_m - v_m)}^2}
\end{align*}
\]

with

  1. by vector,
  2. by vector length,
  3. by the dot product in terms of the matrix transpose,
  4. by the matrix transpose,
  5. by matrix multiplication, and
  6. by exponentiation.

© 2025 Rudolf Adamkovič under GNU General Public License version 3.
Made with Emacs and secret alien technologies of yesteryear.