Derive
- Define probabilities of events \(A\) and \(B\) as
\[\begin{equation*}
\begin{array}{r|cc}
& B & \lnot B \\ \hline
A & s & t \\ \lnot A & u & v.
\end{array}
\end{equation*}
\]
- Substitute \(s, t, u, v\) into the law
\[\begin{equation*}
\begin{array}{ccccccccc}
P(A) & = & P(A | B) & \cdot & P(B) & + & P(A | \lnot B) & \cdot & P(\lnot B)
\\[3ex]
\begin{array}{cc} \boxed{s} & \boxed{t} \\ u & v \end{array}
& = & \begin{array}{cc} \boxed{s} & \bcancel{t} \\ u & \bcancel{v} \end{array}
& \cdot & \begin{array}{cc} \boxed{s} & t \\ \boxed{u} & v \end{array}
& + & \begin{array}{cc} \bcancel{s} & \boxed{t} \\ \bcancel{u} & v \end{array}
& \cdot & \begin{array}{cc} s & \boxed{t} \\ u & \boxed{v} \end{array}
\\[3ex]
\dfrac{s + t}{s + t + u + v}
& = & \dfrac{s}{s + u} & \cdot & \dfrac{s + u}{s + t + u + v}
& + & \dfrac{t}{t + v} & \cdot & \dfrac{t + v}{s + t + u + v}.
\end{array}
\end{equation*}
\]
- Verify the equality
\[\begin{align*}
\frac{s + t}{s + t + u + v}
& \stackrel{?}{=}
\frac{s}{s + u}
\cdot
\frac{s + u}{s + t + u + v}
+
\frac{t}{t + v}
\cdot
\frac{t + v}{s + t + u + v}
\\[2ex]
\frac{s + t}{s + t + u + v}
& =
\frac{s \cancel{(s + u)}}{\cancel{(s + u)} (s + t + u + v)}
+
\frac{t \cancel{(t + v)}}{\cancel{(t + v)} (s + t + u + v)}
\\[2ex]
\frac{s + t}{s + t + u + v}
& =
\frac{s}{s + t + u + v}
+
\frac{t}{s + t + u + v}
\\[2ex]
\frac{s + t}{s + t + u + v}
& =
\frac{s + t}{s + t + u + v}.
\\[2ex]
1
& \stackrel{\checkmark}{=}
1.
\end{align*}
\]