… that Or gadget implements the 3-way disjunction
\[\begin{equation*} \ell_1 \lor \ell_2 \lor \ell_3. \end{equation*} \]
The Or gadget:
No coloring exists when \(\ell_1 = \ell_2 = \ell_3 = 0\):
\(\ell_1\) | \(\ell_2\) | \(\ell_3\) | \(c_1\) | \(c_2\) | \(c_3\) | \(c_4\) | \(c_5\) |
---|---|---|---|---|---|---|---|
0 | 0 | 0 | n/a | 1 | 2 | 2 | 0 |
0 | 0 | 0 | n/a | 2 | 2 | 1 | 0 |
0 | 0 | 0 | 1 | n/a | 2 | 2 | 0 |
0 | 0 | 0 | 2 | n/a | 2 | 1 | 0 |
0 | 0 | 0 | 1 | 2 | n/a | 0 | 2 |
0 | 0 | 0 | 2 | 1 | n/a | 0 | 2 |
0 | 0 | 0 | 1 | 2 | 2 | n/a | 0 |
0 | 0 | 0 | 2 | 1 | 2 | n/a | 0 |
0 | 0 | 0 | 1 | 2 | 2 | 0 | n/a |
0 | 0 | 0 | 2 | 1 | 2 | 0 | n/a |
Otherwise, a coloring exists:
\(\ell_1\) | \(\ell_2\) | \(\ell_3\) | \(c_1\) | \(c_2\) | \(c_3\) | \(c_4\) | \(c_5\) |
---|---|---|---|---|---|---|---|
0 | 0 | 1 | 1 | 2 | 0 | 0 | 2 |
0 | 0 | 1 | 2 | 1 | 0 | 0 | 2 |
0 | 1 | 0 | 1 | 0 | 2 | 2 | 0 |
0 | 1 | 0 | 2 | 0 | 2 | 1 | 0 |
0 | 1 | 1 | 2 | 0 | 0 | 1 | 2 |
0 | 1 | 1 | 2 | 0 | 2 | 1 | 0 |
1 | 0 | 0 | 0 | 1 | 2 | 2 | 0 |
1 | 0 | 0 | 0 | 2 | 2 | 1 | 0 |
1 | 0 | 1 | 0 | 2 | 0 | 1 | 2 |
1 | 0 | 1 | 0 | 2 | 2 | 1 | 0 |
1 | 1 | 0 | 0 | 2 | 2 | 1 | 0 |
1 | 1 | 0 | 2 | 0 | 2 | 1 | 0 |
1 | 1 | 1 | 0 | 2 | 0 | 1 | 2 |
1 | 1 | 1 | 0 | 2 | 2 | 1 | 0 |
1 | 1 | 1 | 2 | 0 | 0 | 1 | 2 |
1 | 1 | 1 | 2 | 0 | 2 | 1 | 0 |