Rudy’s OBTF Rudolf Adamkovič

Home / Computer science / N-queens / Solve with home-grown SAT solver


Solutions

\(n = 1\)-queens trivial,

(my-queens-render-solutions (my-queens 1 t))
\begin{flushleft} \chessboard[smallboard, maxfield=a1, setpieces={qa1}] \end{flushleft}
a84c42ac-1593-44dd-a441-6bacec2bafef.svg

\(n = 2\) and \(n = 3\)-queens have no solutions

(list (length (my-queens 2 t))
      (length (my-queens 3 t)))
(0 0)

\(n = 4\)-queens has two solutions,

(my-queens-render-solutions (my-queens 4 t))
\begin{flushleft} \chessboard[smallboard, maxfield=d4, setpieces={qa3, qb1, qc4, qd2}] \chessboard[smallboard, maxfield=d4, setpieces={qa2, qb4, qc1, qd3}] \end{flushleft}
50ed91b2-657e-4b3a-b70c-36478edfb72b.svg

and the traditional \(n = 8\)-queens has

(length (my-queens 8 t))
92

solutions, one of them being

(my-queens-render-solutions (my-queens 8))
\begin{flushleft} \chessboard[smallboard, maxfield=h8, setpieces={qa6, qb3, qc5, qd7, qe1, qf4, qg2, qh8}] \end{flushleft}
80632ecf-ed08-4c4f-bd64-f6b279174638.svg

© 2025 Rudolf Adamkovič under GNU General Public License version 3.
Made with Emacs and secret alien technologies of yesteryear.