\[\begin{equation*} P(A) = P(A | B) \, P(B) + P(A | \lnot B) \, P(\lnot B). \end{equation*} \]
\[\begin{equation*} \begin{array}{r|cc} & B & \lnot B \\ \hline A & s & t \\ \lnot A & u & v. \end{array} \end{equation*} \]
\[\begin{equation*} \begin{array}{ccccccccc} P(A) & = & P(A | B) & \cdot & P(B) & + & P(A | \lnot B) & \cdot & P(\lnot B) \\[3ex] \begin{array}{cc} \boxed{s} & \boxed{t} \\ u & v \end{array} & = & \begin{array}{cc} \boxed{s} & \bcancel{t} \\ u & \bcancel{v} \end{array} & \cdot & \begin{array}{cc} \boxed{s} & t \\ \boxed{u} & v \end{array} & + & \begin{array}{cc} \bcancel{s} & \boxed{t} \\ \bcancel{u} & v \end{array} & \cdot & \begin{array}{cc} s & \boxed{t} \\ u & \boxed{v} \end{array} \\[3ex] \dfrac{s + t}{s + t + u + v} & = & \dfrac{s}{s + u} & \cdot & \dfrac{s + u}{s + t + u + v} & + & \dfrac{t}{t + v} & \cdot & \dfrac{t + v}{s + t + u + v}. \end{array} \end{equation*} \]
\[\begin{align*} \frac{s + t}{s + t + u + v} & \stackrel{?}{=} \frac{s}{s + u} \cdot \frac{s + u}{s + t + u + v} + \frac{t}{t + v} \cdot \frac{t + v}{s + t + u + v} \\[2ex] \frac{s + t}{s + t + u + v} & = \frac{s \cancel{(s + u)}}{\cancel{(s + u)} (s + t + u + v)} + \frac{t \cancel{(t + v)}}{\cancel{(t + v)} (s + t + u + v)} \\[2ex] \frac{s + t}{s + t + u + v} & = \frac{s}{s + t + u + v} + \frac{t}{s + t + u + v} \\[2ex] \frac{s + t}{s + t + u + v} & = \frac{s + t}{s + t + u + v}. \\[2ex] 1 & \stackrel{\checkmark}{=} 1. \end{align*} \]
\(\blacksquare\)
A person tests positive for a disease.
What is the probability of the person having the disease?
Let
\(t\) | denote the event “tests positive” and | |
\(d\) | denote the event “has the disease”. |
We know that
\[\begin{align*} P(d) & = 1 / 5000 = 0.0002, && \text{\(1\) in \(5000\) prevalence} \\ P(t | d) & = 0.99, && \text{\(99\%\) true positives} \\ P(\lnot t | \lnot d) & = 1. && \text{\(100\%\) true negatives} \end{align*} \]
We must find
\[\begin{equation*} P(d | t). \end{equation*} \]
N.B. We cannot use the Bayes’ Theorem right away because \(P(t)\) is unknown.
\[\begin{equation*} P(t | \lnot d) = 1 - P(t | d) = 1 - 0.99 = 0.01. \end{equation*} \]
\[\begin{equation*} P(\lnot d) = 1 - P(d) = 1 - 1 / 5000 = 0.9998. \end{equation*} \]
\[\begin{align*} P(t) & = P(t | d) \, P(d) + P(t | \lnot d) \, P(\lnot d) \\ & = 0.99 \cdot 0.0002 + 0.01 \cdot 0.9998 \\ & = 0.010196 \end{align*} \]
using the law of total probability.
\[\begin{equation*} P(d | t) = \frac{P(d) \, P(t | d)}{P(t)} = \frac{0.0002 \cdot 0.99}{0.010196} \approx 0.0194193 \\ = 2\% \end{equation*} \]
using the Bayes’ theorem.