The
of the antecedent and the consequent of the conditional
\[\begin{equation*} P \implies Q \end{equation*} \]
in the form
\[\begin{align*} & P \impliedby Q \\ \qor & Q \implies P, \end{align*} \]
which, unlike the contrapositive, is
so
\[\begin{equation*} (Q \implies P) \> \not \equiv \> (P \implies Q), \end{equation*} \]
but is
so
\[\begin{equation*} (Q \implies P) \> \equiv \> (\lnot P \implies \lnot Q). \end{equation*} \]